Exposure to electromagnetic fields is not a new phenomenon. However, during the 20th century, environmental exposure to man-made electromagnetic fields has been steadily increasing as growing electricity demand, ever-advancing technologies and changes in social behaviour have created more and more artificial sources. Everyone is exposed to a complex mix of weak electric and magnetic fields, both at home and at work, from the generation and transmission of electricity, domestic appliances and industrial equipment, to telecommunications and broadcasting. Tiny electrical currents exist in the human body due to the chemical reactions that occur as part of the normal bodily functions, even in the absence of external electric fields. For example, nerves relay signals by transmitting electric impulses. Most biochemical reactions from digestion to brain activities go along with the rearrangement of charged particles. Even the heart is electrically active – an activity that your doctor can trace with the help of an electrocardiogram.
Low-frequency electric fields influence the human body just as they influence any other material made up of charged particles. When electric fields act on conductive materials, they influence the distribution of electric charges at their surface. They cause current to flow through the body to the ground. Low-frequency magnetic fields induce circulating currents within the human body. The strength of these currents depends on the intensity of the outside magnetic field. If sufficiently large, these currents could cause stimulation of nerves and muscles or affect other biological processes. Both electric and magnetic fields induce voltages and currents in the body but even directly beneath a high voltage transmission line, the induced currents are very small compared to thresholds for producing shock and other electrical effects.
Heating is the main biological effect of the electromagnetic fields of radiofrequency fields. In microwave ovens this fact is employed to warm up food. The levels of radiofrequency fields to which people are normally exposed are very much lower than those needed to produce significant heating. The heating effect of radiowaves forms the underlying basis for current guidelines. Scientists are also investigating the possibility that effects below the threshold level for body heating occur as a result of long-term exposure. To date, no adverse health effects from low level, long-term exposure to radiofrequency or power frequency fields have been confirmed, but scientists are actively continuing to research this area.
Biological effects are measurable responses to a stimulus or to a change in the environment. These changes are not necessarily harmful to your health. For example, listening to music, reading a book, eating an apple or playing tennis will produce a range of biological effects. Nevertheless, none of these activities is expected to cause health effects. The body has sophisticated mechanisms to adjust to the many and varied influences we encounter in our environment. Ongoing change forms a normal part of our lives. But, of course, the body does not possess adequate compensation mechanisms for all biological effects. Changes that are irreversible and stress the system for long periods of time may constitute a health hazard. An adverse health effect causes detectable impairment of the health of the exposed individual or of his or her offspring; a biological effect, on the other hand, may or may not result in an adverse health effect. It is not disputed that electromagnetic fields above certain levels can trigger biological effects. Experiments with healthy volunteers indicate that short-term exposure at the levels present in the environment or in the home do not cause any apparent detrimental effects. Exposures to higher levels that might be harmful are restricted by national and international guidelines. The current debate is centred on whether long-term low level exposure can evoke biological responses and influence people’s well being.